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Abstract. Rapid global expansion of multi-stakeholder ecosystems for learning in Science, 

Technology, Engineering, and Mathematics (STEM) demand close attention to the information 

infrastructure needed for sharing best practices and improving outcomes. The existing 

conceptual model of ecosystem development and elements needs to be translated into a 

metrological measurement model tailored to ecosystem management. An evaluation tool not 

designed from measurement principles included 38 questions applied across three years. An 

initial review of the instrument conducted before data were made available found multiple 

ambiguous items and rating categories requiring respondents to summarize diverse aspects of 

their experience in a single rating, with no capacity to reconstruct which aspects were included 

by any given respondent. Response data from 36 ecosystems in 2016, 38 in 2017, and 110 in 

2018 produced more uncertainty than expected given the numbers of items, rating scale 

categories, and responses. No common factor structures across items could be identified. Stated 

expectations already on the record concerning STEM ecosystem development characteristics and 

focal partners, attributes, and goal areas provide a basis for an instrument redesign likely to result 

in meaningful measures advancing a theory of action fit for the purpose of STEM learning 

ecosystem management. 

1. Introduction 

Meaningfulness in language requires a capacity for expression that represents things in the world in 

ways that make them repeatably identifiable no matter who is speaking or which particular words or 

phrasings are used. As Mundy [1] put it, 

The hallmark of a meaningless proposition is that its truth-value depends on what scale or coordinate 

system is employed, whereas meaningful propositions have truth-value independent of the choice of 

representation, within certain limits. The formal analysis of this distinction leads, in all three areas 

[measurement theory, geometry, and relativity], to a rather involved technical apparatus focusing 

upon invariance under changes of scale or changes of coordinate system. 

Measurement models requiring sufficient statistics, separable parameters, and invariant comparisons 

substantiate the independence of measures from the questions asked by evaluating the fit of data and the 

explanatory capacities of predictive theory [2, 3]. Models of this kind specify requirements for 

measurement, and support the calibration of instruments, in accord with the definition of quantity 
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accepted by metrologists [4-6]. When, as is commonly the case, this definition is ignored, measurement 

is assumed to be achieved by assigning numbers to observations according to a rule, and meaningfulness 

is not taken into consideration in the design of assessment instruments or in the analysis of data from 

them. This meaninglessness is plainly evident in the wide acceptance of the fact that summed scores 

mean something different depending on what questions were asked. What is less widely understood is 

just how meaningless those scores might be. The fact is, however, that reliability and significance test 

results may appear reasonable even when instrument content includes nonsense words or items written 

in an uninterpretable language, or respondents evaluate blank entries associated with a rating scale [7].  

The practical value of meaningfulness extends beyond technical concerns with empirical evidence 

of invariance and explanatory models predicting it, to matters of manageability. Clear and actionable 

connections between what needs managing and what we measure are created when we begin with the 

end in mind. How will we know when a goal has been achieved? How will we know where we are at in 

relation to the desired goal? How will we know if we are moving in the right direction? How will we 

find out what needs to be done next? How can we learn from our own and others' experiences in pursuing 

shared goals?  

These questions point to the relevance of the principles of formative assessment [8, 9] and coherent 

frameworks integrating assessments across learning environments and accountability demands [10,-11]. 

When the content of goals are separated into steps in a process, and the sequence of those steps has a 

clear logical order, where progress depends on the accomplishment of prerequisite elementary 

objectives, then observations can be evaluated for how sensibly they conform to expectation, and 

expectations can be revised in light of data. The end result is a customizable tool each stakeholder can 

use to plot their individual course in terms communicable to others. 

Basic instrument design principles suggest that items should be written to focus on variation from 

less to more in an expected range, and to provide the needed level of precision required to support the 

intended decision process [12]. To these ends,  

 items should be written so each one addresses a single issue, and only one single issue (no 

if-then phrases, no ands, buts, or ors), because it is impossible to reconstruct from the 

response which question was answered when items are multivalent; 

 the items should define a coherent narrative of a developmental sequence or learning 

progression from the one thing that will be present or agreeable if only one thing is, all the 

way up to the last thing that will not be present or agreeable, if only one thing is not; 

 enough questions should be asked to drive uncertainty down, relative to the expected 

variation, to the point needed for reliability and precision [13]; and 

 concerning the rating scale: 

o Not Applicable and No Opinion response options are to be avoided,  

o even numbers of response options should be provided, to prevent overuse of middle 

categories allowing a response not associated with an actual decision, and,  

o six or eight response options should be used in the rating scale, to aid in avoiding 

floor and ceiling effects, and to augment reliability when possible via added 

consistent distinctions and score groups. 

2. STEM Learning Ecosystem evaluations 

The STEM Learning Ecosystems Initiative was officially launched by the STEM Funders Network at 

the June, 2015 meeting of the Clinton Global Initiative America. Multiple robust discussions among 

STEM educators, policymakers, funders, and other key stakeholders were informed by growing 

evidence of the need for cross-sector collaborations. Experience shows that those who are in the best 

position to transform STEM education are collaborating communities of active STEM learning 

educators. In this context, the STEM Learning Ecosystem Initiative empowers local communities to 

deliver stronger STEM learning results for more students, more powerful professional development for 

educators, and more meaningful partnerships for business and education leaders. That said, community 

partners working across sectors must not only coordinate their efforts, they must work at new, deeper 
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levels to leverage in-, after-, and out-of-school opportunities to provide more students with quality 

learning.  

Metrological common languages have the potential of enabling work at deeper levels in important 

ways. Measuring ecosystem development (and other relevant variables, such as student learning 

outcomes) in common metrics calibrated from assessments tailored to each local ecosystem's needs 

could streamline communications within and across stakeholder groups, and enhance capacities for 

sharing what works. The capacity of stakeholders to work at deeper levels depends on having maps of 

where we want to go, maps that represent information at the functionally discontinuous levels of 

individual (micro), group (meso), and population (macro) complexity [10].  

Educators need to be able to learn from one another as they explore this new terrain of interdependent 

relationships across previously disconnected areas of STEM learning. Initial attempts at STEM learning 

ecosystem data collection were intended to take advantage of local evaluations already in use, with the 

expectation that improvements would be implemented over time. Following common practices, the 

evaluation items were not written with the intention of achieving meaningful measurement in the sense 

of items and respondents that would together define a relation of conjoint additivity and conditional 

independence. 

Contrary to recommendations based on measurement principles, the STEM Learning Ecosystems 

evaluation items include many conjunctions. Even rating scale choices are multivalent, as with one 

rating of 4 labelled "Infrastructure is robust, placing many educators, and growing to meet demand, and 

is iterating in response to in-field observations." Separating out each subject-verb-object combination in 

any given item may result in as many as eight or more different statements. When the rating options also 

present multiple possible single rating criteria, and even more combinations of rating option pairs and 

triples, the number of possible items represented in any single rating can be 20 or more.  

The items, furthermore, were not written from a construct map with an intention of defining a range 

of variation from less to more. The number of items was determined by considerations of content 

coverage and respondent burden, not by reverse engineering from the precision needed to support a 

decision process. Alternatively, a definitive bank of all possible relevant items could be developed, 

calibrated, and adaptively administered according to the needs of individual ecosystems and the 

precision demands of the relevant management needs [14]. 

Finally, though Not Applicable and No Opinion response options are not used, all items are 

associated with five categories instead of an even number that forces respondents to make a decision.  

Given the predominance of items asking multiple questions, rating categories specifying multiple 

responses, no deliberate intention of posing questions varying from least to most, and no concern for 

measurement uncertainty relative to variation, it is not likely that data from this tool will fit a model 

requiring separable parameters. 

3. Measurement modelling principles 

In the absence of an intention to calibrate an instrument providing meaningful measures independent of 

the questions asked, empirical data evaluations may take the form of a dialogue between model fit 

statistics and the Principal Components Analysis (PCA) of the standardized residuals [15-17]. This PCA 

sets aside the primary dimension measured, which is constituted by the construct-relevant variance 

shared by all or most of the items. When assessment items are deliberately written to address a single 

construct and the responses indicate they generally succeed in this, items provoking construct-irrelevant 

variance are picked up by the model fit statistics. But when items represent multiple constructs in 

roughly equal proportions, fit statistics get muddled and cannot tell them apart. This is where PCA 

excels, however, as it is sensitive to groups of items sharing more variance with each other than with 

the other items. 

Conversely, a very wide score distribution or a multimodal distribution will confuse the PCA, 

causing it to mistakenly identify multiple constructs even if the data stand for an established 

unidimensional construct like length. In this latter case, the PCA results can be checked to see if the 

items supposedly measuring different constructs actually produce uncorrelated ecosystem measurement 
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estimates. If high disattenuated (i.e., estimated after accounting for measurement uncertainty) [18-20] 

correlations (over 0.85) between the pairs of measures produced from different subsets of items are 

produced, PCA results indicating separate constructs may be discounted, especially if theory supports 

the contention that the items work together to define the same dimension. 

PCA results identifying unexplained variance contrasts with eigenvalues less than 1.4 mean that the 

amount of unexplained variance is at a level attributable to that associated with only a single item, or 

less. Factor loadings in this context will likely all be less than |0.40|, disattenuated correlations of the 

measures implied by the item clusters within a contrast will be over 0.85, and the ratio of the variance 

explained by the measures to the unexplained variance captured in the PCA contrasts will likely be 3-1 

or higher. With a well-designed instrument and either a wide score distribution or multimodal data, 

unexplained variance contrast eigenvalues may be over 1.4, and loadings may be lower than 0.40 or 

higher than 0.40, but the ratio of explained to unexplained variance captured in the contrasts will still be 

higher than 3-1, and measures estimated from the separate groups of items will correlate highly, with 

the disattenuated correlations approaching 1.00. Instruments with separate groups of items measuring 

different constructs, however, will have high eigenvalues, loadings greater than |0.40|, low ratios of 

explained to unexplained variance, and disattenuated correlations lower than 0.85. 

4. Instrument calibration results 

The instrument was administered, with some modifications, over three years, with response data from 

36 ecosystems in 2016, 38 in 2017, and 110 in 2018. Ratings from all 184 reporting by-year ecosystems 

on 43 total items (38 items common across all three years, and five used only in 2016) were fit to a 

probabilistic model of measurement requiring sufficient statistics, invariant conjoint additivity, and 

separable parameters [21-24]. In an initial analysis allowing all items to each define their own rating 

scale, even if the ratings shared content, of the 215 (43 times 5) possible categories, four were empty 

and unused. There were no extreme scores for either ecosystems or items. 

As stated, the instrument was not designed with the intention of producing data likely to fit a 

measurement model of this kind. In addition, the data were not gathered with the intention of calibrating 

an instrument in this way (which would have necessitated a pilot study and larger sample size). The 

analyses applied to the data were, then, entirely motivated by empirical considerations, in the hope that 

something substantively significant could be learned, developed into theory, and applied in the future. 

In this context, with the goal of increasing the likelihood of meaningful results, the rating categories 

were optimized so that higher ratings uniformly calibrate at higher levels on the scale [25]. This process 

involves rescoring the data to combine responses in adjacent categories when, among other possibilities, 

there are fewer than ten responses in a category, and/or the category transition thresholds are disordered. 

This rescoring makes results more clearly interpretable, enhances the fit of the data to the model, and 

increases the clarity of the relationship between scores and measures. If a significant amount of new 

data from this tool becomes available, the process would have to be started again from the beginning, 

due to the locally-dependent characteristics associated with small samples.  

After optimization, there were 132 total rating categories across the 43 items, 167 responses on 

average per item, with a range of 36 to 184, and 39 responses per ecosystem on average, with a range 

of 38 to 43. The mean measure was 0.10 logits, less than one standard error above the middle of the item 

scale (0.00), indicating an on-target assessment. Model fit statistics appeared reasonable, with the 

ecosystem measures' mean square information-weighted fit (infit) average and standard deviation at 1.02 

and 0.37, respectively; the mean square outlier-sensitive fit (outfit) statistics were similar. The item 

calibration infit mean and standard deviation was 0.99 and 0.16, with similar outfit results. For the 

ecosystems, mean square fit statistics ranged from about 0.4 to 2.2; and for the items, from about 0.7 to 

1.5. These numbers indicate generally acceptable model fit, given the sample size, rating scale, and 

instrument length, with some expectation that there may be local disturbances in some ecosystem-item 

interactions. 

Ecosystem measurement and item calibration reliabilities were lower than expected (0.93 and 0.86, 

respectively), given the uncertainty typically associated with around 40 well-targeted items with a five-



www.manaraa.com

Joint IMEKO TC1-TC7-TC13-TC18 Symposium 2019

Journal of Physics: Conference Series 1379 (2019) 012042

IOP Publishing

doi:10.1088/1742-6596/1379/1/012042

5

 

 

 

 

 

 

point rating scale and moderate standard deviations [13]. Uncertainties (modeled standard errors) were 

in the expected ranges, but the standard deviations were low (0.9 for the measures, and 0.4 for the items).  

Five PCA contrasts in the overall analysis had unexplained variance eigenvalues ranging from 2.4 to 

4.4, with a 2.25-1 ratio of explained variance to the unexplained variance captured in those five contrasts. 

Figure 1 shows that of the log-scaled variance explained by the measures (M) is about twice as large as 

the unexplained variance captured in the first residual contrast (1 in the figure). 

Measures implied by the three item clusters within each of the five unexplained variance contrasts 

were correlated. Five of the first six, and nine of the 15, disattenuated correlations of the implied 

measures were in the range of 0.56 to 0.83, with the remaining six of the 15 ranging from 0.88 to 0.96. 

In all of the five sets of contrasts, the correlations of clusters 2 and 3 were 0.83 or higher. Correlations 

tended to increase as the contrast eigenvalues decreased, as expected. The low ratio of explained to 

unexplained variance, and the low correlations, suggest the presence of multiple constructs. 
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Analyses proceeded, then, by a series of experiments removing the first cluster of items in the first 

contrast with the highest eigenvalue and the lowest overall correlation of associated measures. The 

typical result of this process is that construct-irrelevant variance decreases in the remaining data, so that 

model fit and PCA results improve, though reliability may drop as uncertainty increases due to the 

removal of items.  

That did not occur. The first re-analysis removed the ten items in the first contrast, in the expectation 

that the highly correlated measures associated with the two sets of items in the second and third contrasts 

would then work together to measure the same construct. But the PCA results for this restricted analysis 

were almost identical to the first analysis' results. 

After eight analyses and the removal of 30 of the 43 items, there were still three PCA contrasts with 

eigenvalues over 1.4, four of 15 disattenuated correlations under 0.85, and, worst of all, a 1-1 ratio of 

explained variance to the unexplained variance captured in five contrasts. Further studies of various 

subgroups of items identified in these analyses repeated this kind of pattern for the overall data set 

including all three years as well as for each individual year. 

With the removal of one further item, however, there was only one contrast with an eigenvalue over 

1.4, the three correlations of the ecosystem measures implied by its item clusters were all 0.95 and 
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higher, and the ratio of explained variance to the unexplained variance captured in that one contrast was 

6-1. This 12-item scale may be unidimensional, though the ambiguities present in the item and rating 

scale contents suggest the model fit may be more a matter of random variation than meaningful variation.  

5. Conclusions 

Much can be learned from existing data in the context of pragmatic measurement principles, even when 

the invariance requirements of meaningful comparisons are not included in the design of the tool used.  

Future efforts at measuring the development of STEM Learning Ecosystems will be able to build on 

expectations that have already been articulated concerning progressions in the quality of partnerships, 

collaborations, and outcomes. Details specified in, for instance, a 2016 slide presentation set the stage 

for a theory of ecosystem development that could be embodied in an assessment profile [26]. Should the 

results of the present analyses usefully correspond with expectations like these, formulated as they are 

from experience, they could provide a useful basis for proceeding toward a formatively useful ecosystem 

evaluation platform. 
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